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" ABSTRACT

Botulism results from the action of a protein neurotoxin

(MW = 150,000) produced by the bacterium Clostridium botulinum, of which

- there are eight known strains. Botulinum neurotoxin is the most potent

J biological toxin known, having a median lethal dose of 5-50 ng/kg body

weight. The primary site of action of botulinum toxin is the cholinergic

nerve terminal, where it blocks the release of the neurotransmitter

acetylcholine. Death usually results from respiratory failure.

Nonlethal doses of botulinum toxin can induce sprouting of the nerve

terminal and have significant postsynaptic effects, including muscle

atrophy and alteratijns in the membrane electrical properties of the

muscle fiber. There is no universally available treatment for botulinum

intoxication. However, immunotherapeutic and chemotherapeutic procedures

are now being developed and will be discussed.
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INTRODUCTION

I1 Clostridium botulinum, the organism respoi.ible for botulism, is

an anaerobic, spore-forming, and rod-shaped bacterium. Cases of human

botulism are often classified in one of the following categories: food

poisoning, wound botulism, or infant botulism (78). The most commonly

known form of botulism occurs after ingestion of food contaminated with

the organism and preformed toxin. Wound botulism, the rarest form,

results from infection at the wound site with subsequent toxin production

and absorption. Infant botulism occurs during intraintestinal growth of

the bacterium and may be a factor related to sudden infant death syndrome

(3). Clinical symptoms arise from the action of a neurotoxin which is

synthesized and released by the organism. The primary site of action of

the neurotoxin is at cholinergic nerve terminals where it inhibits

release of the neurotransmitter, acetylcholine (1, 2, 14-16, 18, 32, 57,

80). The blockade is most prominent in cranial nerves, autonomic nerves,

and at the neuromuscular junction, which accounts for the clinical

manifestations of diplopia, dysphagia, and dysarthria (78). The cause

of death is usually respiratory paralysis due to the blockade of

transmitter release from the phrenic nerve to the diaphragm muscles.

Most of our present knowledge concerning the mode of action and the

physiological consequences of the botulinal neurotoxins have resulted

from studies of its effects on the neuromuscular junction. Therefore,

this review will restrict itself to a discussion of that topic. Details

concerning other aspects of the toxin, the organism, or the disease

process can be found elsewhere (76, 78).

IA -~ -
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THE NEUROTOXINS

The neurotoxins of C. botulinum arc found in at least eight-
immunologically distinct types: A, B, C, C2, D, E, F, and G (73). In

most instances an individual strain of C. botulinum will produce only

one type of toxin (73). The toxins are synthesized during cell growth

(10, 12) as protoxins or slightly toxic progenitor toxins (11, 52) and

= released by cell lysis (76). The method by which each toxin type

attains full toxicity varies. However, three basic mechanisms appear to

be common: (a) action of an endogenous protease on the toxin precursor,

(b) action of an exogenous protease on a slightly active toxin precursor,

or (c) synthesis of a fully active toxin requiring no activating protease.

For example, type A, and some proteolytic strains of types B and F,

produce a protease which activates the toxin precursor (20). The toxins

produced by most types E and G strains, and some of their nonproteolytic

strains, must be activated by an exogenous protease, e.g., trypsin (39).

In contrast, some type E toxins are synthesized in a fully active forn

(39).

The first botulinal toxin to be crystallized was type A (51), which

was sho.n to have a molecular weight of about 900,000 daltons (46, 6S)'.

It soon became clear, however, that the crystallized substance was

composed of two components because the crystals also possessed

hemagglutinating properties, which did not affect toxicity (50). These

results suggested that the crystalline toxin had two distinct-subunits,

a neurotoxin and a hemagglutinating factor. Separation of these components

was accomplished with ultracentrifugation of crystalline solutions at
.

various alkaline pHs and ionic strengths (86, 87). Utilizing ion

exchange chromatography, Das Gupta et al. (19) successfully separated

the crystalline toxin into its neuroto:in (alpha fraction) and its

7- _



- hemaggiutinating components (beta fraction). The neurotoxin was shoun to

iave a molecular weight of 150,000 daltons, while the hemagglutinin

I fragment was 500,000 daltons The neurotoxins from types A, B, C, D,
- -A

E, and F were found to have molecular weights of 150,000 (19), 167,000

(6), 141.000 (79), 170,000 (62), 135,000 (47), and 150,000 (88) daltons,

respectively. The molecular weight of the type G neurotoxin has yet to

be established.

The neurotoxin itself can be fragmented by disulfide bond reduction,

vielding two nontoxic subunits (6. 48). It is interesting to note chat

the subunits from neurotoxins A (53,000 + 97,000), B (59.000 + 104,0C0),E D (60.000 + 110.000), E (50,000 + 102,000) and F (56,000 + 105.000) have

, ! appro:-imately the same molecular veights (6, 20, 62, 88). Although

I almost all the studies on the effects of botulinal neurotoxin have been

done with type A, it is believed that all the toxin types exert their
I

effect by the same mech-'ism.

J UPTAKZE OF -OXi:4i ork relating to the uptake kinetics of the botulinal

neuro-oxins has been carried out by Simpson (70-72, 74). Recently he

- presented a sequence for to:in uptake which includes: binding,

'I translocation, and lytic steps (74). This sequence was described by

Simpson (74) with the following equation:

K K K
BT + R 1 BT-R + S T BT-S + 2  BT

where the toxin (BT) binds to a receptor (R) orn the external surface of

IJI
Measurement of molecular weight of large proteins is subject to an error

S factor of up to 20%.

JI
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the nerve terminal with a reaction rate K A translocation step (K

involves movement of the toxin receptor complex (BT-RI ) to a new site

(S) within the nerve rerminal. In the final step, the toxin complex

(BT-S) binds to an internal receptor site (R,), where it blocks

transmirter release.

In the binding step the toxin behaves like an irreversibly acting

R-W ligand. Since extensive tissue washing does not affect the activity of

bound toxin, if dissociation of the toxin from th. receptor occurs, the

rate constant must be small. This step has a low r1.6), is not
11

i dependent on neuronal acrivity and is, therefore, probably not rate-

limitinz (741). During the binding step, the toxin is vulnerable to

iaction by a tye-specific antitoin (immunogiobulin). This suggests

that the binding moiety and the antigenic moiety are not identical.

*1 Furthermore, toxoid (inactivated toxin), although fully antigenic, does

not itself bind to the nere terminal membrane and, therefore, is

unsuitable as a copetitive inhibitor to the neurotoxins. Unlike some

other presynaptic toxins, such as !-bungaroto.in, taipoxin and notexin,

t!e botulinal neurotoins do nor have calcium-dependent phospholipase A
.2

activity, thereby eiiminaring this specific enzymatic reaction as a

mcchanism of action in the binding step (74). The identity of the toxin

receptor(s) for all eight toxin types is unknown.

The necessity for a translocation step is based on the observation

that the access of antitoxin to the bound toxin does not decrease

proportionally with the rate of onset of paralysis (74). This suggests

an intermediate step between a binding step and a paralytic step.

IThe alteration in the magnitude of any neasurable parameter as a function

of a 10eC change in temperature.
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Translocation of the toxin into the nerve terminal is dependent on nerve

activity (74). After binding is complete, the toxin may be taken up by

endocvtosis of nerve terminal membrane (8) during the synaptic vesicle

i recycling process (3-) subsequent to nerve stimulation. The upDtake of
J@

bound toxin with the recycled vesicle membrane could explain why nerve

activity shortens the time required for the onset of paralysis (3S), and

low a molecule of 150,000 molecular weight can be taken up so readily

.I
The f-inal ltic step. which may involve more than one step (74)

leads to the actsal blockade of transmitter release. This step is

unaffected by antitoxin, has a high Q0  ( 4), and is dependent on the

process of transmitter release (74). The lvtic step may be the rate-

limiting step in this sequence. It is unknown, whether the toxin

molecule m.oves freely within the nerve terminal to the site of blockade

or is transported there -hile associated with a synaptic vesicle. The

precise site of blockade also is unknow-n, but it is presumed to be the
I, :

active zone" region (17), where most transmitter release is thought to|Z
i ioccur (37). A hypothetical scheme for the uptake of toxin at the nerve

t

ter.,inai. is illustrated in Figre 1.

4PRESY-NCATIC EFFECTS

1-echanism of blockade

Acetvicholine is sinthesized in rhe motor nerve terminal '(35. 67),

packaged and released in vesicles as quantal units (21, 22, 28, 29) or

released as individual molec les, co--.onv referred to as nonquantal

( or molecular release (42-44) (Fig. 1). Acetylcholine is normally released

spontaneously or as a result of nerve stimulation. As the name implies,

snontzneous release occurs randomly in both the quantal and the molecular



71fors. However, molecular release was estimated to account for 98-99%1
of :he total spontaneous release of acetylcholine tinder nor--1 conditions

(30. A4). In contrast, nerve-evoked release is predominantly quantal

in nature,. although, one mar assume that some molecular release also

occurs alter nerve stimulation. Quantai release is dependent on the

entry of calcium into the nerve terminal (27, 42). The increase in

intracellular calcium causes the vesicles containing acetylcholine

to fuse (exocytosis) with specialized areas of the nerve terminal

me=brane called "active zones" (3, 17, 36, 37) and release their

con:ents inzo the synontic cleft to interact with the postsynapnic

ace-vicholine receptors.

acezvlcholire release can be reduced by blocking any one of the

j steps involved in synthesis. storage, ur release of transmitter. However,

botulinu= toin does not affect impulse conduction down the nerve or at

I the nerve terminal (34). Although completely paralyzed, nuscles still

respond nor-ally to both direct stimulation or direct application of

acetvichoiine by intraarterial injection or micro-iontophoretic application

(9, 32, 3). Botulinum toxin does not affect the synthesis and storage

A
H of acetylcholine. the nuoer of sinantic vesicles or the ultrastructure

i - of the nerve terminal (16, 41, 0). In addition, the toxin does not

block calcium from entering the nerve terminal (18, 41). Based on these

studies, it may be concluded that botulinum toxin exerts its affect by

blocking some step after the excitation of the nerve terminal,- apparently

'affecting the release process (exocytosis) itself (18, 41, 81, 83).

a( Snontaneous transmitter release

L-hen quanta (synaptic vesicles) are released individually in a

random fashion from the nerve terminal, the interaction of the

I _ _.. -
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acevrycholine from these cuanta with the postsynaptic membrane produces

1 a local den-lar-ion caled miniature end-plate potentials (n.e.p.p.s)
SQititativ¢e -easurements of this spontaneous quantal release o

acetyIcholine can be nide by the analysis of m.e.p.p.s recorded by

means of an iatraceliular microelectrode inserted at -he postsynaptic

membrane. thereby demonstrating the degree of blockade due to tomin

injection. esurements of this type indicated that botulinum toxinM

causes a reduction in the frequency and amplitude of m.e.p.p.s in the
2

n-.eriod im.ediatelv after administration (13. 18. 34, 77, 85). However,

the frequency and amplitude of m.e.p.p.s increased - rith m_ after toxin

injectlon (Table 1). The a=Plitude distribution of m.e.p.p.s was never

j normal after ainistraen of the to-in, initially containing a population

: i' or very s=all m.e.p.n.s, and therafter containing a mixed population

Sof small and large =.e.p.b.s (iS). It is interesting to note however.

that the am--litude distribuion of n-e p. .s in poisoned _-uscles could

be shifted toward a mere no.al distribution b' usinc nrocedures which

increase sontanecun transmitter release, e.-.. Ca iononhore A231S7

I rogether with hi h Ca'' addition of black widow spider venom or high

frequency stimUlarion of the nerve (13, 10. 34 77). n-ese data support

r-.e Premise tha botuiin toxin acts presy-n-apticalv and does not

Iaffect the numner of normal-vesicles of acetvlcholine, but it does

affect the spontaneous release of these vesicles (18).

As mentioned earlier, acetylcholine is released from motor nerve

terminals in vesicles as au-nral units or as individual molecules.

However, only a small fraction of spontaneous acetylcholine release is

quantal in nature. Most of the acetylcholine released from the motor

j nerve terminal in the absence of nerve stimulation is in the for-- of

-t n

-I _-
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is reduced to only a few percent of normal (18). Brooks (14) demonstrated

that total release is reduced only by one third, thereby indicating 'h1t

molecular release is partially blocked by botulinum toxin. In a more

recent study, Polak, eL al. (66) showed that spontaneous release of

acetylcholine was reduced up to 60% of control value after poisoning

with botulinum toxin. This reduction in transmitter release may have

given rise to the increase ia acety]choline content inside nerve terminals

treated with the toxin (66). In addition, .e increase in spontaneous

transmitter release, which normallv occurs after increasing extracellular

potassium concentration in vitro was drastically reduced in botulinum-

treated nerves (66). These data demonstrate that botulinum toxin almost

completely abolishes spontaneous quantal release and reduces molecular

release up to 60%.

Nerve-evoked transmitter release

Nerve stimulation causes the simultaneous release of hundreds of

synaptic vesicles (quanta) from the nerve terminal. The acetylcholine

from these vesicles causes a depolarization of the postsynaptic membrane

known as an end-plate potential (e.p.p.s.). Within a few days after

treatment with botulinum toxin, e.p.p.s evoked by nerve stimulation were

reduced in amplitude approaching the size of small m.e.p.p.s (13, 18).

With time, end-plate poteptials increased in size and were occasionally

made up of more than one quantum. however, end-plate potentials remained

subthreshold and did not produce a muscle contraction upon nerve stimulation.

Low frequency (0.5 Hz) repetitive stimulation resulted in a high number

of failures; i.e., some stimulation pulses failed to produce a postsynaptic

response, although nerve terminal depolarization was present in each

Aj
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stimulus (18). The variability in the postsynaptic response due to

botulinum poisoning is illustrated in Figure 2. At stimulus frequencies

greater than 5 Hz, the number of failures was reduced and prolonged

facilitation was observed (13, 18). The data obtained from measuring

e.p.p.s after botulinum toxin poisoning indicated that the nerve-

evoked transmitter release remained quantal in nature and followed

Poisson statistics (18), although the amount of transmitter released was

drastically reduced.

The receptor to which the toxin binds to produce the blockade of

transmitter release is not known. Resolution of this dilcmma may prove

difficult because little is known concerning the release process under

normal conditions. Hanig and Lamanna (33) have suggested a physical

blockade of the release sites which occurs at the moment the vesicles

fuse to nerve terminal membrane and that a ganglioside or neuraminidase

may be an integral part of the receptor complex. Specifically, the

sialic acid residue of a ganglioside might be involved in the binding

reaction (75). Furthermore, Lamanna (49) hypothesized that the toxin

blocks only when an opening exists during nerve stimulation. However,

Leander and Thesleff (53) showed that increasing the number of open

release sites during the release process did iot enhance the ability of

the toxin to produce its blockade.

Cull-Candy et al. (18) concluded that the toxin acted by reducing
the system'is sensitivity to Ca, thereby increasing the intracellular

concentration of Ca necessary for the excitation secretion process to

proceed. This idea was based on experiments showing a restoration of

transmitter release similar to normal muscle by methods which increase

intracellular Ca levels, e.g., Ca ionophore with high extracellular Ca

S ')I iU
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concentration or prolongation of the nerve terminal action potential

with tetraethylammonium (TEA) or tetanic stimulation.

Nerve sprouting

In addition to its effect on transmitter release, botulinum toxin

induced sprouting of the motor nerve after local nonlethal injection

(26). However, this effect occurred at different rates in "fast-twitch"

(gastrocnemius) and "slow-twitch" (soleus) muscles (24). In soleus

muscle, nerve sprouts were present in the muscle by 4 days after toxin

injection (25) and their numbers increased progressively until the fifth

to sith week, when new end-plates were formed (24). In contrast,

~sprouting did not occur in the gastrocnemius muscle until 3 or 4 weeks

I after toxin injection and continued until the new end-plates were formed

between 6 and 8 weeks (24, 25).

! Sprouting apparently occurred to compensate for the lack of

neuromuscular transmission at the original junction. The new nerve

sprouts were associated with Schwann cells (25) and attempted to make

contact in the area of the original end-plate region. The first nerve-

muscle contacts were loose and irregular, often interrupted by the

accompanying Schwann cells. Intricate postsynaptic folds, always seen

at normal end-plates, were absent during the initial period of nerve-

muscle contact. Normal end-plates were observed in the soleus muscle 4

months after toxin injection. However, many nerve terminals were

scattered along the muscle fibers in areas without noticeable end-plates

(25). In contrast to the soleus muscle, the gastrocnemius had some

normal end-plates, while other end-plates had few and shallow

postsynaptic folds when examined several weeks after toxin injection

(25).
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POSTSYNAPTIC EFFECTS

The postsynaptic action of botulinum toxin is indirect, producing

"denervation-like" effects on the postsynaptic muscle fiber. This

occurs through the toxin's ability to interfere with the neurotrophic

effect which the nerve normally exerts on the muscle (23).

The first postsynaptic effect reported after toxin injection, in

addition to paralysis, was muscle atrophy (32). This type of atrophy

*MA
was shown to be similar in degree to that observed after surgical

denervation (40). Between 2 weeks and 2 months after Loxin injection,

muscle weight and muscle fiber diameter decreased by 40%. The soleus

muscle showed a decrease in total fiber number due to some degeneration.

However, the nerves innervating the affected muscles were unchanged and

the muscle spindles and intrafusal muscle fibers -"_re not significantly

affected by the toxin. It is interesting to note that, although fast-

twitch and slow-twitch mucles were paralyzed at the same time after

toxin injection, the soleus muscles became atrophic faster than the

Sgastrocnemius (24).

Botulinum toxin also affects the distribution and characteristics

of cholinesterase at the postsynaptic membrane. Cholinesterase activfty

has been observed in conjunction with nerve sprouts; however, this

enzyme activity resulted from the nonspecific enzyme pseudo-cholinesterase

rather than the true acetylcholinesterase (24). As new neuromuscular

junctions were formed, the amount of pseudo-cholinesterase decreased

(24).

In normal muscle only the end-plate, where receptors are present in

high density, is sensi:ive to the depolarizing effect of acetylcholine

(4, 84). Following denervation, however, the entire surface of the

muscle fiber becomes sensitive to acetylcholine due to the insertion in

<71-77 7971hT
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the membrane of new "extrajunctional" receptors (4, 84). Thesleff (80)

showed that after the administration of botulinum toxin, the muscle

became sensitive to .applied acetylcholine to a similar degree and with

approximately the same time course as denervated muscle. In a subsequent

study (65), other investigators demonstrated that the number of

extrajunctional acetylcholine receptors inducee by botulinum toxin

poisoning was somewhat less quantitative than after denervation. Since

the toxin effect occurs without any apparent ultrastructural change in

the nerve terminsi, it is unlikely that the "denervation-like" effects

are the result of nerve degeneration (80).

Both the administration of botulinum toxin and surgical denervation

result in a depolarization of the resting membrane potential and the

development of tetrodotoxin-resistant action potentials recorded from the

muscle membrane (59). However, the extent of these effects was less in

the toxin-treated muscles than in denervated muscles (59). This finding

was similar to the observations made with respect to extrajunctional

receptors.

In a preliminary report, Sellin and Thesleff (69) showed a change

in the ion channel kinetics at the end-plate membrane after botulinum

toxin poisoning, which were similar to the kinetics recorded from channels

appearing in areas outside the end-plate after denervation (31). These

observations suggest that botulinum toxin induces the appearance of new

receptor-ion channel complexes at the end-plate and these complexes

ire similar to those observed in extrajunctional regions after denervation.

In support of this hypothesis, Levitt et al. (54) showed that the turnover

of acetylcholine receptors at the neuromuscular junction increases after

denervation. They concluded from their data that the junction contains

a dual population of receptors after denervation: the original receptors

V
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present before denervation and new ones with turnover rates equivalent

to extrajunctional receptors.

I. These data indicate that, even if transmitter release is restured,

botulinun toxin may produce long-term alterations in the postsynaptic

muscle membrane. These changes may be due to the ability of the toxin

to interfere with a trophic substance of neuronal origLn, which may be

acetylcholine, nerve-induced muscle activity or some as yet unknown

biochemical substance. It is clear, however, that the postsynaptic

alterations due to botulinum toxin poisoning are similar in mode, but

not degree, to those changes observed after surgica! denervation.

PROPHYLAXIS AND THERAP;

Although there is no commercially available single product for the

treatment of botulinum intoxication, research is in progress to establish

procedures for prophylaxis and therapy. The prophylactic method involves

immunization of individuals by stimulating antibody production after

a series of three injections of a formalin-inactivated toxin (toxoid).

There are two approaches for therapeutic intervention in nonimmunized

individuals who have been exposed to the organism or the toxin. The first

involves the use of specific antitoxin. The second method is by means

of chemotherapeutic agents, whose mode of action would involve increasing

transmitter release in nerve terminals already blocked by the toxin.

Immunization of animals with botulinal toxoids has been practiced

for over 40 years (7). However, toxoids for human use were not

available until the late fifties, when a polyvalent toxoid was developed

to protect high-risk individuals against toxins A-E (61). This toxoid

produced measurable quantities of toxin-neutralizing antibody when

-o--- -L 7
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injected into humans in a series of three initial injections over a 3-

month period, with a booster after 12 months (61).

It is possible to use the antibody produced in immunized

individuals as an antitoxin for individuals who have contracted botulism.

llowever, the quantity of specific neutralizing antibody produced in

-persons immunized with botulinal toxoids during a single 12-month period

of immunization is insufficient to justify its collection and use as a

therapeutic agent (61). At present, the only licensed antiserum products

available are those derived from horse serum (55), which produce side-

reactions in 21% of recipients due to noncompatible proteins (60).

Projects are under way to collect large quantities of human immune

globulin by plasmapheresis of individuals who have received multiple

doses of pentavalent (A-E) toxoid over a 5-year period (61) . Such a

program should produce a human immune globulin product of a low risk for

the specific treatment of botulism.

There are two important problems in utilizing irrumunological

techniques for botulinum poisoning. First, it is not feasible to

immunize everyone against botulism, but only those in high-risk

situations. Second, although antitoxin can be a useful therapeutic

agent, it is only effective on circulating toxin or on to:-in in the

initial binding step. Antitoxin does not inhibit or reduce paralysis

once the toxin is inside rhe nerve terminal. Therefore, agents which

increase transmitter release are likely candidates for relieving the

paralysis caused by botulinum toxin. The influx of Ca into the nerve

terminal during stimulati is a prerequisite for transmitter release

- *These individuals have high titers of antibody due to tie long-term

immunization.
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during excitation-secretion coupling (42). Agents, such as the Ca

ionopliore A231S7 and black widow spider venom, can increase spontaneousI

quantal release in botulinum-poisoned muscles (18, 57). Increasing

extracellular Ca alone does not restore spontaneous quantal release to

normal values (18). For nerve-evoked transmitter release, TEA and 4-

aminopyridine increase quantal content in botulinum-poisoned muscles

(18, 57, 58) (Fig. 3). Unfortunately, TEA has a curare-like action

postsynaptically and, therefore, is less suitable than 4-aminopyridine

as an antagonist ot botulinum poisoning (58).

Aminopyridines. in particular 4-aminopyridine (4-AP) and 3,4-

diaminopyridine (3,4-DAP). are knom to stimulate the central nervous

sys:em, elevate blood pressure, and exert an anti-curare effect (82).

These effects can be attributed to an increase in neural transmitter

release (45, 56, 63, 64). It is presumed that 4-AP and 3,4-DAP increase -a

Ca permeability by their blocking action of K efflux (rectification)

during the nerve terminal action potential. The duration of the action

potential is prolonged through this mechanism. A longer time in theIV

depolarized state increases the amount of Ca which nay enter the nerve

terminal during excitation-secretion coupling. Since Ca ion is

intimately involved in the transmitter secretion process, an increased

transmitter release should result. The aminopyridine group of drugs

are, therefore, promising antagonists to the paralytic effect of botulinum

toxin, as demonstrated in animal experiments (58). During an-outbreak

of type E botulism in England, 4-AP was administered to four patients.

These individuals showed a restoration of transmitter release

(electromyograph) with an almost complete reversal of peripheralz

paralysis (5). However, the effect was transient and no effect was

observed on the respiratory muscles.
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It appears that a likely treatment for botulism might be the

administration of a drug which increases transmitter release, like

4-AP or 3,4-DAP, plus an antitoxin. Separately, they both have

drawbacks, but their combined effect should be synergistic. As mentioned

previously, the antitoxin is only effective in neutralizing the tot-in

before binding or during the binding step, and is useless once the

toxin enters the nerve terminal. Although aminopyridines are effective

in increasing transmitter release even after the onset of paralysis,

their stimulatory effect :,.av actually increase the rate of toxin uptake

durin the enriv stages of the disease. Assuming toxin uptake is

dependent on endocytotic uptake of nerve terminal membrane during the

vesicle recycling process, aminopyridines alone would accelerate

the rate of uptake of bound toxin. In combination, antitoxin could

nel:tralize all circulating toxin or toxin in the binding step, while

aminopyridine could antagonize tihe blocking effect of toxin inside

- the nerve terminal. hile the proposed treatment is theoretical

at this time, combination therapy warrants further consideration as

a g modality against botulinum intoxication.
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TABLE 1

Frequency and amplitude (mean and standard deviation) of miniature

end-La potentials recorded from rat extensor digitorum longus

mu s cle

Days after

toxin injection Frequency (sec,) Amplitude (mV)

Control 7.0 + 1.47 0.6 + 0.18

I 1 0.1 + 0.06 0.3 + 0.08

2 0.2 +0.11 0.4 + 0.12

3-4 0.2 + 0.06 0.6 + 0.23

1 5-6 0.9 + 0.43 1.3 + 0.45

1 7-8 0.6 + 0.16 1.5 + 0.46

12-14 0.6 + 0.11 2.4 + 0.38

4 Recorded at various times after local injection of botulinum toxin

type A (= 5 mouse LDo) (From Cull-Candy et al. 18).
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FIGURE LEGENDS

Fig. 1. Diagram showing the release of acetylcholine from the nerve

terminal in molecular form (nonquantal) and within vesicles (quantal).

Quantal tranrimitter ielease, whether spontaneous or evoked, is dependent

on the influx of Ca for vesicle fusion to occur. After a vesicle fuses

to the axolemma, membrane is recycled in a manner similar to that

proposed by Hfeuser and Reese (36). Membrane is retrieved from the

axolemma by endocytosis and coalesces to form cisternae which slowly

divide to form new vesicles. It is not known how the new vesicles are

refilled with acetvlciholine. Botulinum toxin (as represented by the

dirk mass) binds to the membrane and may enter the nerve terminal via

the recycled vesicles. It is not known (question mark) whether the

toxin is released at some point in the recycling process to move freely

to the blocking site or arrives at the site of blockage via a refilled

Ivesicle [(adapted from Thesleff (81), Simpson (74), and Heuser and Reese

(36)].

Fig. 2. End-plate currents recorded in vitro, after nerve stimulation,

from rat extensor digitorum longus muscles (23°C) voltage clamped at -80 mV.

Panel A shows end-plate currents from normal muscle whose release pr, ess

was depressed by an extracellular magnesium concentration of 12 mM.

However, the end-plate currents remained regular in amplitude. Panel B

shows end-plate currents of variable amplitude from muscles two days

after local injection of 5 mouse LD botuilinum toxin type A. In some
50

experiments with botulinum-poisoned nerve-muscle preparations, nerve

stimulation failed to produce a consistent postsynaptic response, or only

a response equivalent to the release of a single quantum. The horizontal

bar is 5 milliseconds and the vertical bar is 10 nanoamperes (Sellin and

1 Thesleff, unpublished).
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Fig. 3. Ability of 4-aminopyridine to increase transmitter release in

botulinum-noisoned muscles (rat extensor digitorum longus). End-plate

currents (e.p.c.s) as a function of clamped potential (mV) were recorded

f-romn nor1al ( / ) muscle, a muscle 7 days after injection of botulinum

toxin ( 0 ) and a botulinum-poisoned muscle (7 days) after the

addition of 2 .M -4-aminopyridine to the muscle bath ( ). Currents

were recorded in vitro at 23C; muscle contractions were prevented in

normal muscle by using the crushed-fiber technique (69). 4-AlninoDyridine

clearly increased the postsynaptic response (e.p.c.) toward normal values

at each clamped potenti-.! (Sellin and Thesleff, unpublished).
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